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In a previous paper, we have performed the molecular orbital calculation for the TCNE-HMB complex to
find that there exist two charge-transfer (CT) states separated by only a few hundred wavenumbers, and
based on this model, we have analyzed the steady-state absorption and fluorescence spectra. In this paper,
we shall use this model to analyze the femtosecond fluorescence profiles reported by Rubtsov and Yoshihara
and the femtosecond pump-probe time-resolved spectra reported by Wynne et al. For this purpose, vibrational
relaxation, vibrational coherence, and electronic relaxation and vibronic coherence between the two CT states
are considered. For the case of the TCNE-HMB complex in a nonpolar solvent, we find that the vibrational
coherence is due to the 159-161.7 cm-1 mode, which has a vibrational relaxation time of 0.1-0.2 ps. We
also find that the interaction energy between the two CT states is 50-80 cm-1, which leads to internal
conversion from CT2 to CT1 and back electron transfer from the CT1 to the ground electronic state with a
time constant of 11.2 ps.

1. Introduction

A main feature of EDA (electron donor-acceptor) complexes
is the appearance of a new absorption band due to the complex
formation. Introducing the concept of charge-transfer complex,
Mulliken and others reported the mechanism of the new complex
formation in solution.1-4 However, molecular orbital theory
allows a more general description of such complex revealing
the mechanism of complex formation.
One of the most studied EDA complexes is tetracyanoeth-

ylene-hexamethylbenzene (TCNE-HMB). Resonance Raman
profiles and their analyses on this EDA complex have been
reported.5-10 The weak, near-infrared fluorescence spectrum
of this system has also been measured.6,7 Although the CT
spectrum of this complex does not exhibit distinctive multiple
peaks, the two closely spaced CT transitions were found on the
basis of the quantum chemistry calculation.11

In a previous paper,12 we have reported the results obtained
from both semiempirical and ab initio calculations of the
TCNE-HMB complex and discussed important features of the
two CT states. From the ab initio calculation, we have identified
all the vibrational modes of the electronic ground state. In
particular, we have reported 23 vibrational modes in the range
smaller than 310 cm-1. Based on the characteristics of these
modes, we divided them into three groups: (1) five donor-
acceptor relative motions (DA modes) and two DA modes
highly mixed with a HMB C-CH3 twisting motion (DA/CH3

modes); (2) 14 HMB and/or TCNE highly localized modes in
the range larger than 80 cm-1 but smaller than the thermal
energy of room temperature; (3) 2 TCNE modes smaller than
310 cm-1. We should note that all DA and DA/CH3 modes
were found in the range less than 100 cm-1.
Based on these MO calculations, we have set up a model

which is qualitatively shown in Figure 1. Using this model
and the results from the resonance Raman scattering,5-7 we have
analyzed the experimental absorption and fluorescence spectra
of the TCNE-HMB complex inCCl4.
Recently, Hochstrasser’s group13 have used ultrashort pump-

probe measurements to study the TCNE-HMB complex in
polar and nonpolar solvents. In particular, the ultrashort time-
resolved spectra of the TCNE-HMB complex in cyclohexane
clearly showed quantum beats of a damped oscillation withpω
) 161.7 cm-1. In addition to this vibrational coherence, short-
time decay and long-time decay components were observed.
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Figure 1. Model of TCNE-HMB complex in nonpolar solvent.

4256 J. Phys. Chem. A1998,102,4256-4265

S1089-5639(98)00234-5 CCC: $15.00 © 1998 American Chemical Society
Published on Web 04/17/1998



More recently, Rubstov and Yoshihara14 have reported the
ultrashort time-resolved fluorescence spectra of the TCNE-
HMB complex in CCl4 solvent. They found that the time-
resolved spectra showed quantum beats of 159 cm-1 with an
ultrafast decay component.
In this paper, we shall analyze these femtosecond time-

resolved spectra by using the model shown in Figure 1. From
Figure 1, we can see that the ultrafast dynamics must take place
between the CT1 and CT2 manifolds. In other words, in the
picosecond range, we must consider the dynamics of vibrational
relaxation, vibrational coherence, and vibronic coherence.

2. Ultrafast Time-Resolved Spectra

2.a. Ultrafast Pump-Probe Spectra. In the pump-probe
experiments, for the case in which the pump-pulse and probe
pulse do not overlap, we can use the so-called generalized linear
response theory in which the time-dependent linear susceptibility
includes the contributions from the dynamics of population and
coherence of the system.
Using the perturbative density matrix method for the optical

processes and applying the adiabatic and the Condon ap-
proximations, we obtain15-17

where

Hereωpu andωpr denote the central frequencies of the pump
pulse and the probe pulse, respectively,τ is the time delay of
probe pulse relative to pump one. In eqs 2 and 3,FbV,bV(ωpu, τ)
and FbV,bV′(ωpu, τ) are the density matrix elements of the
vibrational population of theV state and the vibrational
coherence of theV andV′ states, respectively, whileFbV,bV(ωpr)
andFbV,bV′(ωpr) are the band-shape functions16,17associated with
FbV,bV(ωpu, τ) andFbV,bV′(ωpu, τ) of the probe optical process. In
eq 3B, ø5′′eco(ωpu, ωpr, τ) denotes the contribution to the
generalized susceptibility from the vibronic coherenceFbV,cw(ωpu,
τ). Equation 1 indicates that the ultrafast time-resolved spectra
consist of the contributions from population (i.e.,ø5′′in through
FbV,bV) and coherences (i.e.,ø5′′vco throughFbV,bV′ andø5′′ecothrough
FbV,cw(ωpu, τ)).
2.b. Coupled Master Equations for Vibrational Relax-

ation and Electronic Relaxation. To obtain the dynamics of
the density matrix elements given in eqs 2 and 3, we have
derived coupled master equations and solved them with ap-
propriate initial conditions associated with the optical pump
process.18-21 In the previous work,18-21 we have presented our
simulation method based on the coupled master equations for
vibrational population and coherence dynamics and applied the

theoretical result to analyze the quantum beat observed in the
femtosecond time-resolved spectra of photosynthetic bacterial
reaction centers. From Figure 1, we can see that in addition to
vibrational coherence, vibronic coherence will be an important
dynamics after excitation. Thus, in this paper, we shall take
into account vibronic coherence.
The system Hamiltonian is given by

where

The interaction between the two CT states is given by

whereJbc represents the electronic coupling constant between
the CT1 and CT2 states. Here we have used the Condon
approximation.
The Liouville equation for this system without laser fields is

given by

whereL̂0 ) [Ĥ0, ]/p, L̂J ) [V̂J, ]/p, andΓ̂ represents the damping
operator.18-21 Vibrational population and coherence dynamics
and vibronic coherence dynamics, as well as electronic relax-
ation, can be obtained by numerically solving eq 7 and by using
an appropriate preparation of vibrational population and coher-
ence and vibronic coherence created via the optical pump
process.20,21 The relevant equations of motion are given in the
following, and some important relations are given in Appendixes
A-C.
The coupled master equations for vibrational population,

vibrational coherence and vibronic coherence are given by

ø5′′(ωpu,ωpr,τ) ) ø5′′in(ωpu,ωpr,τ) + ø5′′vco(ωpu,ωpr,τ) +
ø5′′eco(ωpu,ωpr,τ) (1)

ø5′′in(ωpu,ωpr,τ) ) (µbba X µbab/p)∑
V
Re{FbV,bV(ωpu,τ) ×

FbV,bV(ωpr)} (2)

ø5′′vco(ωpu,ωpr,τ) )

(µbba X µbab/p)∑∑
V * V′

Re{FbV,bV(ωpu,τ) FbV,bV(ωpr)} (3A)

ø5′′eco(ωpu,ωpr,τ) )

(µbca X µbab/p)∑
V
∑
w

Re{FbV,cw(ωpu,τ) FbV,cw(ωpr)} (3B)

Ĥ0 ) |a〉Ĥa〈a| + |b〉Ĥb〈b| + |c〉Ĥc〈c| (4)

Ĥa ) ∑
u)0

∞

|u〉pωvib
a (u+ 1/2)〈u| (5A)

Ĥb ) ∑
V)0

∞

|V〉pωvib
b (V + 1/2)〈V| (5B)

Ĥc ) ∑
w)0

∞

|w〉pωvib
c (w+ 1/2)〈w| (5C)

V̂J ) ∑
V)0

∞

∑
w)0

∞

|V〉|b〉Jbc〈c|〈w| + h.c. (6)

∂

∂t
F̂(t) ) -(iL̂0 + Γ̂ + iL̂J)F̂(t) (7)

∂

∂t
FbV,bV(t) ) -ΓV,V

V,V(b) FbV,bV(t) - ΓV,V
V+1,V+1(b)FbV+1,bV+1 -

ΓV,V
V-1,V-1(b)FbV-1,bV-1 - i ∑

cw)0

∞ Jbc

p
〈bV|cw〉Fcw,bV(t) +

i ∑
cw)0

∞ Jcb

p
〈cw/bV〉FbV,cw(t) (8)

∂

∂t
FbV,bV′(t) ) -{i(V - V′)ωvib

b + ΓV,V′
V,V′(b)}FbV,bV′(t) -

ΓV+1,V′+1
V+1,V′+1(b)FbV+1,bV′+1 - ΓV-1,V′-1

V-1,V′-1(b)FbV-1,bV′-1 -

i ∑
cw)0

∞ Jbc

p
〈bV|cw〉Fcw,bV′(t) + i ∑

cw)0

∞ Jcb

p
〈cw|bV′〉FbV,cw(t) (9)
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In this section we have presented an essential expression for
transient spectra that are associated with the imaginary part of
the transient susceptibilityø5′′(ωpu,ωpr,τ). Although we notice
that multimode effects on the transient dynamics are very
important due to the fact that experimentally the laser pulse
widths used are in the range 80-100 fs, as a starting point we
focus only on coherent excitation of one mode which has a large
normal coordinate displacement. In Appendix A, taking into
account other modes that have small displacements and inho-
mogeneities in the electronic transition frequency, we have
derived an expression for the preparation of the vibrational
coherence. This simplification allows us to analyze the
vibrational relaxation and its characteristic time constant without
involving complicated and cumbersome calculations. Our
model system for the transient spectroscopy consists of three
electronic states and one vibrational mode. The pump pulse
interacts with the electronic ground statea and the CT states
(Appendix A). Subsequently this optical process initiates both
vibrational relaxation process in the CT2 manifold b{V} and
nonradiative transition to the CT1 manifoldc{w}.
2.c. Ultrafast Time-Resolved Fluorescence Spectra.The

signal of ultrafast time-resolved fluorescence spectroscopy which
consists of the incoherent and coherent contributions can be
expressed as17,22

where

Here,pωscatrepresents the energy of an emitted photon and the
band-shape functions,fbV,bV(ωscat), fbV,bV′(ωscat), and fbV,cw(ωscat)
are given by

respectively. In eq 15,ebscatandµbba represent the unit vector of
the polarization of radiation and the electronic transition dipole
moment, respectively,〈au|bV〉 denotes the Franck-Condon
vibrational overlap integral, andΓbV,au

bV,au denotes the dephasing
rate constant of the vibronic coherence between the electroni-
cally excited statebV and the ground stateau. J(ω - ω′bV,au) is
given by

The dynamics of the population and the coherence of the system
can be obtained by solving eqs 8-10.
It is instructive to derive the simplest analytic expression

P(ωscat, t) for a limiting case. Suppose that onlyV ) 1 andV
) 0 are coherently pumped and that we can neglect all the
vibronic coupling terms in the coupled master equations. In
this case, we have

From eqs 19 and 20, we obtain

whereγ1f0 and Γ10
10 represent the vibrational relaxation rate

constant and vibrational dephasing rate constant, respectively.
From eqs 15A, 16, and 18, one can see thatε10 is a function of
ωscatand given byε10 ) tan-1 [Im{fb0,b1′(ωscat)}/Re{fb0,b1′(ωscat)}],
wherefb0,b1′(ωscat) is given by eq 15A.

3. Discussions

3.a. Ultrafast Pump-Probe Spectra. Now we are in a
position to analyze the femtosecond time-resolved profile of
the TCNE-HMB in cyclohexane reported by Hochstrasser’s
group. The fs profile shows the quantum beat which has a major
contribution of the damped oscillation with a frequency ofpω
) 161.7 cm-1.13 No obvious oscillatory components due to
the coherence betweenV ) 0 andV ) 2 or the high-frequency
mode coherence appears in the observed quantum beats.
Using eqs 1-3 and 8-10, we simulate femtosecond pump-

probe spectra. Figure 2a shows the calculated time-resolved
profile. For this simulation, we have chosenpωbc ) 400 cm-1

from the semiempirical MO calculation12 and S ≡ (ωvib/
2p)(∆Q)2 ) 0.82, Huang-Rhys factor. Here∆Q represents a
shift of the CT1 potential surface minimum with respect to the
ground-state potential surface minimum along the normal

fbV,cw(ωscat) )
2ωscat

πpc3
(ebscat‚µbca)(ebscat‚µbba)∑

u

ωbV,auωcw,au

〈cw|au〉〈au|bV〉[J(ωscat- ω′cw,au) + J(-ωscat- ω′au,bV)]
(15B)

J(ω - ω′bV,au) )
ΓbV,au
bV,au

(ΓbV,au
bV,au)2 + (ω - ωbV,au)

2
+

i(ω - ωbV,au)

(ΓbV,au
bV,au)2 + (ω - ωbV,au)

2
(16)

Fb0,b1(t) ) exp(-itω10 - tΓ10
10)Fb0,b1(0) (17)

fb0,b1(ωscat) ) |fb0,b1(ωscat)|εiε10 (18)

Pin(ωscat,t) ) Fb1,b1(t) fb1,b1(ωscat) + Fb0,b0(t) fb0,b0(ωscat) (19)

Pvco(ωscat,t) ) 2|fb1,b1(ωscat)|e-tΓ10
10

cos(tω10 + ε10)Fb0,b1(0)

(20)

P(ωscat,t) ) A+ Be-tγ1f0 + Ce-tΓ10
10

cos(tω10 + ε10) (21)

∂

∂t
FbV,cw(t) ) -{i(ωbc + Vωvib

b - wωvib
c ) +

ΓV,w
V,w(b,c)}FbV,cw(t) - ΓV,w

V+1,w+1(b,c)FbV+1,bw+1 -

ΓV,w
V-1,w-1(b,c)FbV-1,bw-1 - i ∑

cw′*cw

∞ Jbc

p
〈bV|cw′〉Fcw′,cw(t) +

i ∑
bV′*bV

∞ Jbc

p
〈bV′|cw〉FbV,bV′(t) - i

Jbc

p
〈bV|cw〉{Fcw,cw(t) -

FbV,bV(t)} (10)

P(ωscat,t) ) Pin(ωscat,t) + Pvco(ωscat,t) + Peco(ωscat,t) (11)

Pin(ωscat,t) ) ∑
V

FbV,bV(t) fbV,bV(ωscat) (12)

Pvco(ωscat,t) ) ∑∑
V*V′

FbV,bV′(t) fbV,bV′(ωscat) (13A)

Peco(ωscat,t) ) ∑
V
∑
w

FbV,cw(t) fbV,cw(ωscat) (13B)

fbV,bV(ωscat) )
4ωscat

3

πpc3
|ebscat‚µbba|2 ∑

u

|

〈bV|au〉|2
ΓbV

b
,au

V,au

(ΓbV
b
,au

V,au)
2 + (ωscat- ωbV,au)

2
(14)

fbV,bV′(ωscat) )
2ωscat

πpc3
|ebscat‚µbba|2 ∑

u

ωbV′,auωbV,au〈bV′|au〉

〈au|bV〉[J(ωscat- ω′bV′,au) + J(-ωscat- ω′au,bV)] (15A)
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coordinateQ of thepω ) 161.7 cm-1 mode. The value forS
is determined such that no oscillatory component due to
coherenceV ) 0 andV ) 2 appears in quantum beats. The
temperature is set to be 300 K. We have introduced the effective
detuningp∆eff ) p(ωpu - ωba)/14) 136 cm-1, wherepωpu )
pωpr ) 16 219 cm-1 andpωba ) 14 310 cm-1, and assumed
that the pump and the probe pulses have a time duration ofTpu
) 100 fs with a coherence time of 1/γpu ) 12.5 ps-1 (see
Appendix A). Our choice of the detuning is based on the
consideration that the 161.7 cm-1 mode is associated with one
of the 14 modes of the group (2) as mentioned in Introduction.
We assume that these 14 modes can participate in the distribu-
tion of the excess energy. In Appendix A, we have derived a
general expression (see eq A-5) to show the preparation of the
vibrational coherenceFbV,bV′ by the pumping laser pulses. From
this expression, we can see that the preparation ofFbV,bV′ depends
on temperature, the Franck-Condon vibrational overlap inte-
grals, the dispersion of inhomogeneity distribution, the dephas-
ing constant, the laser pulse width, and the pumping frequency.
In other words, these factors will determine whether a particular
vibrational coherence can be prepared under the prescribed
experimental conditions. That is, eq A-5 can provide the
information whether a particular quantum beat under the
prescribed experimental conditions can be observed.
The simulation can semiqualitatively reproduce the experi-

mental result well if the electronic coupling constant is chosen
to beJcb) Jbc) 2.4 ps-1, the vibrational relaxation rate constant
is γ1f0(b)) γ1f0(c)) 5 ps-1, the pure dephasing rate constant
is γ(d)b ) γ(d)c ) 2.5 ps-1 and the vibronic pure dephasing is
γbc
(d) ) 1.25 ps-1. The detailed expressions for these rate
constants are given in Appendix B. Of course, we realize that
the numerical values of these rate constants are valid only to
within perhaps a factor of 2. But they will be helpful for further
experimental investigations; for example, by varying the pump-
ing and probing laser wavelengths in the pump-probe experi-

ments as well as varying the pumping laser wavelength in time-
resolved fluorescence experiments.
The choice ofJcb ) Jbc ) 2.4 ps-1 is consistent with the

relative magnitudes of the transition moments of the two CT
bands. We have also performed numerical calculations using
values other thanJcb ) Jbc ) 2.4 ps-1 and found that the
dynamics are insensitive to the changes of 2.4( 1 ps-1. For
comparison, the experimental results13 are shown in Figure 2b.
Our simulation can explain the behavior of the quantum beat
appearing in the femtosecond profile reported by Hochstrasser’s
group and our simplified model grasps the essence of the
experimental profile. From the displacement of the 161.7 cm-1

mode, a major coherence contribution comes from the coherence
betweenV ) 0 andV ) 1. One cannot distinguish a contribution
from impulsive stimulated Raman scattering (ISRS) from pump-
probe experimental data especially when the experiment is
performed under the electronically resonance condition and the
vibrational dynamics of electronically excited and ground states
are very similar.23-25 In this case, inclusion of the ground-
state dynamics will not seriously affect the results presented in
this paper. However, our analysis on the pump-probe experi-
ment can still be helpful for further experimental investigations
such as the dependence of the pumping and probing laser
wavelengths in the pump-probe experiments.
The above analysis shows that the vibrational relaxation in

the two electronic states takes place at the rate of 5 ps-1, while
the pure dephasing rate is 2.5 ps-1. The rate of vibronic
transition from CT2 to CT1 is determined by the vibronic
couplingJbc. As seen in the above discussion, the vibrational
coherence of the CT2 state is the dominant process in the short
time region in our model. A significant population transition
from CT2 to CT1 occurs when the coherence of CT2 is well
relaxed. To see how the population of CT1 is created, we
construct a long-time behavior of the vibrational population on
the CT1 surface. For this purpose, one may employ a wave-
packet description of the vibrational dynamics consisting of both
population and coherence. The wave-packet description is easily
obtained by transforming the density matrix in an energy
representation to that in a normal coordinate representation, for
example

where

âc ) ωc
vib/p, andHcw(xâcQ) is the Hermite polynomial. This

vibrational population,Fc,c(Q,t), is created via a nonradiative
transition from the CT2 surface to the CT1 surface.
Figure 3 shows the simulation of time development of the

vibrational population of each CT surface. Panels (a) and (b)
depict the time-dependent population in a wave-packet repre-
sentation and a contour map, respectively. The calculations are
performed up to 10 ps. We can conclude that the nonradiative
transition after 3 ps occurs from the thermally populated
vibrational states of CT2, and this process does not create
vibronic coherence in the CT1 surface after 3 ps. Although

Figure 2. (a) Theoretical femtosecond time-resolved spectra and (b)
experimental femtosecond time-resolved spectra.

Fc,c(Q,t) ) ∑
w)0

∞

∑
w′)0

∞

〈Q|cw〉〈cw|Fc,c(t)|cw′〉〈cw′|Q〉

) ∑
w)0

∞

∑
w′)0

∞

Fcw,cw′(t) Ψcw(Q) Ψcw′(Q) (22)

Ψcw(Q) ) (xâc/π

2ww! )1/2Hcw(xâcQ) exp(-âcQ
2/2)
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we include in our simulation a constant of 0.0892 ps-1 for the
back-electron transfer rate constant,13 it does not affect the CT1
dynamics at least within 10 ps. No oscillatory feature can be
seen in Figure 3b after 4 ps, and then the vibrational populations
increase in CT1 almost constantly. This situation indicates that
the back-electron-transfer process from CT1 to the ground state
occurs after the system reaches the vibrational equilibrium in
CT1.
3.b. Ultrafast Time-Resolved Fluorescence Spectra.Re-

cently, Rubtsov and Yoshihara have performed femtosecond
fluorescence measurements of TCNE-HMB complex inCCl4
and the experimentally observed femtosecond fluorescence
spectra show quantum beats with an oscillation ofpω ) 159
cm-1 14 and other oscillatory components were not obviously
observed. Here we shall analyze the femtosecond fluorescence
spectra of the TCNE-HMB complex inCCl4 solvent. For this
purpose, we shall use the same values for the molecular variables
as used in section 3.b except for dynamical quantities. The
pump pulse is assumed to have a time duration ofTpu ) 40 fs
with a coherence time of 1/γpu ) 25 ps-1 andpωpu ) 15 748
cm-1 and pωscat ) 13 405 cm-1. In this case, the effective
detunings are-103 and 64 cm-1 for the excitation and the
detection, respectively. The temperature is set to be 300 K.
Figure 4a demonstrates the calculated time-resolved profile.

For comparison, the experimental results are reported in Figure
4b. The experimental setup and conditions are described
elsewhere in detail.14 We find that the simulation can semi-
qualitatively reproduce the experimental result well with the
following physical constants:γ1f0(b) ) γ1f0(c) ) 6.7 ps-1,
γ(b)b ) γ(d)c ) 2.5 ps-1, Jcb ) Jbc ) 1.5 ps-1, andγbc

(d) ) 1.25
ps-1. From the analysis of the transient absorption spectra of
TCNE-HMB in cyclohexane and the ultrafast time-resolved
fluorescence spectra of TCNE-HMB in CCl4, we can see that
certain physical constants such as electronic coupling between

the two CT states and rates of vibrational relaxation show some
solvent effect.
From 4a,b, one can see a fast decay component with an

oscillatory feature. To understand the detailed dynamics of this
fast decay component, we also show the vibrational population

Figure 3. Long-time behavior of vibrational states of the CT1 and the CT2 surfaces. (a) A wave-packet representation of vibrational states of the
CT1 and CT2 surfaces and (b) the wave-packets are shown in contour maps.

Figure 4. (a) Theoretical femtosecond fluorescence spectra and (b)
experimental femtosecond fluorescence spectra.
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dynamics of both CT2 and CT1 states in Figure 5. In Figure
5, the upper panel (a) and the middle panel (b) depict the
vibrational population dynamics of the CT2 state and the of
the CT1 state, respectively, and the lower panel (c) shows the
vibronic density matrix elementFb0,cw(t) as a function ofw. From
Figure 5a, one can see that initially the pumping pulse creates
nonequilibrated population onV ) 0, which is larger than the
pseudothermal population at 1 ps. However, other vibrational
levels are less populated compared with the pseudothermal
population of each level. This situation allows theV ) 0 state
to decay to theV ) 1 state due to the thermally induced
vibrational relaxation:

According to our model, the ultrafast decay component in this
case results mainly from the thermally induced vibrational
relaxation of theV ) 0 state.
Figure 5b shows that the vibrational populations of higher

vibrational levels in the CT1 state are populated due to the
vibronic coupling with the CT2 state, and subsequently, due to
the vibrational relaxation, the population ofw ) 0 becomes
dominant. This situation can be understood by monitoring how
the vibronic coherence develops in time. From Figure 5c, we
find that vibronic coherences ofV ) 0 T w ) 0, V ) 0 T w
) 1, andV ) 0T w ) 2 play an important role in the vibronic
transition from theb state to thec state.
It should also be instructive to simulate detection frequency

dependence of fs fluorescence spectra based on our model.
Figure 6 shows the simulated fs fluorescence spectra with

effective detection detuningp∆eff ) 64, 223, and 382 cm-1.
As discussed in the previous section, we can see phase shifts
in the time-resolved spectra as a function ofp∆eff. It should
be noted that the fast decay component becomes less obvious
in the case in whichp∆eff is large.
The dynamics of anisotropy for intramolecular electronic

excitation-transfer processes of molecules in solution has been
studied by Hochstrasser’s group.26-28 It was shown that the
time-dependent fluorescence anisotropy measurement technique
is a powerful tool for studying the transient excitation transfer
dynamics occurring between two chromophores on a time scale
of several hundreds femtoseconds.
We are now interested in the polarization effect on time-

resolved fluorescence spectra of TCNE-HMB complex since
the two charge-transfer states (i.e., CT1 and CT2) are closely
located in energy. For this purpose, we need the following two
relations which relate the space-fixed coordinates to be molecule-
fixed coordinates in order to carry out the spatial averages over
the molecular orientation:

where, for example,AB represents a transition dipole moment of
the molecule.
We first consider a case in which both pumping and

fluorescence involve the same two electronic statesa andb. In
this case, if both pumping and observation involve theZ-
polarization, thenP(ωscat, t) will be proportional to1/5|µbba|4 and
if the pumping is polarized along theZ-axis while the observa-
tion is polarized along theX-axis, thenP(ωscat, t) will be
proportional to1/15|µbba|4. Thus, the anisotropy of this single
excited state case is 0.4.
We now discuss the case of TCNE-HMB complex in which

the two CT states are involved in the optical process. To see
the essence of the effect of the two electronic transitions on
anisotropy, we focus on the population dynamics, assuming that
the system reaches the vibrational equilibrium and that only
the b state is optically excited initially. In this case, the

Figure 5. Vibrational and vibronic dynamics. (a) Vibrational popula-
tion of CT2, (b) vibrational population of CT1, and (c) vibronic
coherence ofFb0,cw(t).

∂

∂t
Fb0,b0(t) ) -e-pωvib

b /kT γ1f0(b)Fb0,b0(t) + γ1f0(b)Fb1,b1 -

i ∑
cw)0

∞ Jbc

p
〈b0|cw〉Fcw,b0(t) + i ∑

cw)0

∞ Jcb

p
〈cw|b0〉Fb0,cw(t) (23)

Figure 6. Detection frequency dependence of calculated femtosecond
fluorescence spectra.

〈AZBZCZDZ〉 ) 1/15 [(AB‚BB)(CB‚DB) + (AB‚CB)(BB‚DB) +
(AB‚DB)(BB‚CB)] (24)

〈AXBXCZDZ〉 ) 2/15 (AB‚BB)(CB‚DB) - 1/30 [(AB‚CB)(BB‚DB) +
(AB‚DB)(BB‚CB)] (25)
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dynamics of each electronically excited state is given by

where

(see Appendix A, eq A-6).
If both pumping and observation involve theZ-polarization,

then eq 24 becomes1/5|µbba|4 for fluorescence from theb state
and ((2cos2 θ + 1)/15)|µbba|2|µbca|2 for that from thec state. Here,
we have usedµbba‚µbca ) |µbba||µbca|cos θ. If the pumping is
polarized along theZ-axis while the observation is polarized
along theX-axis, from eq 25 we find1/15|µbba|4 for fluorescence
from theb state and ((2- cos2 θ)/15)|µbba|2|µbca|2 for that from
the c state. Thus, the anisotropy will approximately be given
by

Now we shall demonstrate eq 27 as a function ofθ by solving
eq 26. Figure 7 shows the calculated anisotropy of this system.
The calculations are based onJcb) Jbc) 1.5 ps-1 and the values
for the other parameters taken from ref 12. We can see from
Figure 7 that it is important to measure the anisotropy of
TCNE-HMB complex in order to discuss the orientation of
the transition dipole moments of the two CT states. It would
also be interesting to investigate solvent effects on the anisotropy
of TCNE-HMB. In this treatment, we have restricted ourselves
only to the population dynamics after the thermal equilibrium
is reached. However, a more sophisticated simulation including
vibronic and vibrational coherences can be carried out as well.

4. Conclusion

We have shown in the previous sections that the back electron
transfer from CT1 to the ground state becomes dominant when

the vibrational population in CT1 reaches thermal equilibrium
(or at least pseudoequilibrium) due to the fact that vibrational
relaxation occurs faster than the characteristic time of electron
transfer. It is more appropriate to regard this back-electron-
transfer process as internal conversion because this nonradiative
process goes from an excited electronic state (in this case CT1)
to the ground electronic state.
We have found that the ultrafast decay component observed

by Robtsov and Yoshihara is mainly due to the thermally
induced vibrational relaxation fromV ) 0 toV ) 1 in the excited
electronic manifold. Detection frequency dependence and
polarization dependence of femtosecond time-resolved fluores-
cence have also been simulated based on our model.
Note that experimental data in a much shorter time region

are needed for a quantitative analysis of the amplitude and phase
of the beat modulation. Such a detailed analysis will lead to a
better understanding of the potential surfaces of the ground, CT1,
and CT2 of TCNE-HMB. Thus, femtosecond time-resolved
spectra of TCNE-HMB complex at various pump and probe
frequencies are required for us to perform a more detailed
analysis and to have a more critical test on the theoretical model.
From the theoretical analysis of the experimental data of the

femtosecond pump-probe time-resolved spectra of a TCNE-
HMB complex in cyclohexane and the femtosecond time-
resolved fluorescence spectra of TCNE-HMB complex inCCl4,
we can see that the vibrational mode of 159-161.7 cm-1 is
responsible for vibrational relaxation and dephasing and that
the physical constants such as the rates of vibrational relaxation
and dephasing and the electronic interaction between CT1 and
CT2 are sensitive to solvents (i.e., the solvent effect).
It should be noted that the TCNE-HMB complex is an ideal

system for studying the photophysical processes for the reason
that absorption spectra, fluorescence spectra, resonance Raman
spectra, and charge-recombination rate constant between the
ground and charge-transfer states are available. The fact that
the TCNE-HMB complex can be easily crystallized and that
it possesses no inversion symmetry but has large dipole-moment
differences between the ground and excited states (in this case
CT states) may make this complex an ideal system for producing
large second-harmonic generation.
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Appendix A

In this Appendix, we shall derive an expression for the
preparation of vibrational coherence by the pumping lasers under
an inhomogeneous condition in which there exist the electronic
transition energies distributed with a Gaussian distribution
function. This vibrational coherence can then be used as the
initial condition in the solution of eq 9. We start with the
stochastic Liouville equation which takes into account the
interaction between the molecules and the laser. We assume
that the pulse has a rectangular shape of its duration timeTpu,
its coherence time 1/γpr, its central frequencyωpu, and its
amplitude|EB(ωpu)|.
In the following, our derivation assumes 0e t e Tpu. In the

rotating wave approximation, we find for the off-diagonal
density matrix of the vibronic coherence due to the interaction

Figure 7. Calculated anisotropy of time-resolved fluorescence spectra.

dFbb/dt ) -WbfcFbb + Wbfce
-Ebc/kTFcc (26a)

dFcc/dt ) -(Wcfa + Wbfce
-Ebc/kT)Fcc + WbfcFbb (26b)

Wbfc ) |Jbc/p|2∫-∞

∞
dτ exp(iτωcb) ∏

l)1

N

Gl(t) (26c)

r(t) ≈ 0.4+ 3/5(cos
2 θ - 1)

|µbca/µbba|2Fcc(t)
Fbb(t) + |µbca/µbba|2Fcc(t)

(27)
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with the laser:

whereFbV,au(t) ) σbv,au(ωpu, t)e-itωpu, DbV,au ) i(ωbv,au- ωpu) +
ΓbV,au
bV,au + γpu, andΓbV,au

bV,au represents the dephasing rate constant
for the vibronic coherence between the electronically excited
statebV and the ground stateau.
For the Gaussian distribution of inhomogeneities, we find

where〈‚‚‚〉 represents the average operation,ωj bV,au ) ωj ba + (u
- V)ωvib with ωj ba being the average of the electronic transition
frequency andd denotes its dispersion of Gaussian distribution
for inhomogeneities.
The preparation for the vibrational coherence via the pumping

laser is then given by

For the case in which the inhomogeneity effect is so large that
d2(t + τ)2/4 >> 1, we find from eqs A-1, A-2, and A-3 and
from the Condon approximation:

where 〈ΘbV|Θau〉 represents the Franck-Condon vibrational
overlap integral. Suppose that we are concerned with the
vibrational coherence of theith mode. For this multimode case

where

Here 〈øbVi|øaui〉 represents the Franck-Condon vibrational
overlap integral for theithe mode,Sl ) (ωl/2p)(∆Ql)2, γ1f0 ≡
γ1lf0l(b) ≈ γ1lf0l(a) (see Appendix B, eq B-9), andnjl )
[exp(pωl/kT) - 1]-1.

We should stress here that eq A-5 can easily be extended to
any number of modes that will be excited coherently. From eq
A-5, we can investigate how the rest of the vibrational modes
which will not be excited coherently affect the preparation of
the vibrational coherence. We can also study effects of
inhomogeneity and detuning on the preparation of vibrational
coherence by using the dispersion of inhomogeneity distribution
which was estimated to be about 150 cm-1 for TCNE-HMB
complex inCCl4 solvent in a previous paper.12

The band shape functionsFbV,bV′(ωpr) andFbV,bV(ωpr) can be
derived in a similar fashion;16,17 for example

Appendix B

This Appendix is mostly concerned with the vibronic coher-
ence created via the electronic coupling between the CT2 and
CT1 states. The equation of motion for the vibronic coherence
betweenbV andcw is given by

where vibronic dephasing rate constantΓV,w
V,w(b,c) consists of

the population decay rate constantsΓV,V
V,V(b) andΓw,w

w,w(c)17,29and
the vibronic pure dephasing rate constant,ΓV,w

(d)V,w(b,c):

The vibronic pure dephasing rate constant can be derived by
assuming that the system-heat bath interaction is given by
∑λ)b,c|λ〉Q2R(2)(λ)〈λ|, whereQ represents the normal coordinate
of the system andRλ

(2) is a function of the heat bath variables.

σbV,au(ωpu,t) ) i
p

µbbV,au‚EB(ωpu)Fau,au(0)
(1- e-tDbV,au)

DbV,au
)

i
p

µbbV,au‚EB(ωpu)Fau,au(0)∫0∞ dτ {e-tDbV,au - e-(t+τ)DbV,au}

(A-1)

〈e-itDbV,au〉 ) exp[-it(ωj bV,au - ωpu) - tΓbV,au
bV,au - tγpu - d2t2

4 ]
(A-2)

〈FbV,bV′(t)〉 )
i

p
e-tDbV,bV′∫0t dτ eτDbV,bV′ ∑

u

[[µbbV,au‚EB(ωpu)]×

〈{σbV′au(ωpu,τ)}* 〉 - [µbau,bV′‚EB(ωpu)]〈σbV,au(ωpu,τ)〉] (A-3)

FbV,bV′ )
Tpu|µbba‚EB(ωpu)|2

p2
∑
u

Fau,au(0)〈ΘbV|Θau〉〈Θau|ΘbV′〉 ×

{∫0∞ dτ exp[-τ{i(ωj bV,au - ωpu) + ΓbV,au
bV,au + γpu} -

d2π2

4 ] +

∫0∞ dt exp[-τ{-i(ωj bV′,au - ωpu) + ΓbV,au
bV,au + γpu} -

d2τ2

4 ]}
(A-4)

〈ΘbV|Θau〉 ) ∏
l)1

N

〈øbVl
|øaul〉

FbVi,bV′i
)
Tpu|µbba‚EB(ωpu)|2

p2
∑
ui

Faui,aui(0)〈øbVi
|øaui〉〈øaui|øbV′i

〉 ×

[∫0∞dτ exp[τ{i(ωpu - ωj bVi,aui
) - ΓbVi,aui

bVi,aui - γpu} -

d2τ2

4 ]∏
l*i

Gl(τ) +∫0∞dτ exp[τ{-i(ωpu - ωj bV′i,aui
) -

ΓbVi′.aui
bVi′,aui - γpu} -

d2τ2

4 ]∏
l*i

{Gl(τ)}*] (A-5)

Gl(t) ) exp[-Sl{(2njl + 1)- (njl + 1)eiτωl-τγ1f0 -

njle
-iτωl-τγ1f0}] (A-6)

FbVi,bV′i
(ωpr) )

T2|µbba‚EB(ωpu)|2

p2
∑
ui

〈øaui|øbVi
〉〈øbV′i
|øaui〉 ×

[∫0∞dτ exp[τ{i(ωj bVi,aui
- ωpr) - ΓbVi,aui

bVi,aui - γpr} -

d2τ2

4 ]∏
l*i

Gl(τ) +∫0∞dτ exp[τ{-i(ωj bV′i,aui
- ωpr) -

ΓbVi′,aui
bVi′,aui - γpr} -

d2τ2

4 ]∏
l*i

{Gl(τ)}*] (A-7)

d/dt FbV,cw(t) ) -{i(ωbc + νωvib
b - wωvib

c ) +

ΓV,w
V,w(b,c)} FbV,cw(t) - ΓV,w

V+1,w+1(b,c)FbV+1,cw+1(t) -

ΓV,w
V-1,w-1(b,c)FbV-1,cw-1(t) - i ∑

cw′*cw

∞

(Jbc/p)〈bV|cw′〉 ×

Fcw′,cw(t) + i ∑
bV′*bV

∞

(Jbc/p)〈bV′|cw〉FbV,bV′(t) -

i(Jbc/p)〈bV|cw〉{Fcw,cw(t) - FbV,bV(t)} (B-1)

ΓV,w
V,w(b,c) ) 1/2{ΓV,V

V,V(b) + Γw,w
w,w(c)} + ΓV,w

(d)V,w(b,c) (B-2)
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In this case, we find

where, for example

andRRâ
(2)(b) ) 〈R|R(2)(b)|â〉. HereR andâ denote the states of

the heat bath modes andPR is the Boltzmann distribution
function. γ(d)c can be obtained by exchangingb with c in eq
B-4.

If we assume that

then eq B-3 yields

Moreover if ωvib
b ) ωvib

c so thatγ(d)b ) γ(d)c ≡ γbc
(d), we find

ΓV,w
(d)V,w(b,c) ) (V - w)2γbc

(d).

In a similar fashion, we can also obtain the rate constant of
the vibronic coherence transfer from (bV + 1, cw+ 1) to (bV,
cw) as

and that from (bV-1, cw-1) to (bV, cw) as

Hereγ1f0(b or c) denotes the vibrational relaxation constant
and is given by30

where∑λ)b,c|λ〉QR(1)(λ)〈λ|. HereR(1)(λ) is a function of heat
bath variables.

Appendix C

Here we shall list the important relations between vibrational
relaxation and dephasing rate constants:31

whereγ(b) represents the radiative decay rate constant. The
vibrational dephasing rate constant is given by31

with ΓV,V′
(d)V,V′(b) ) (V - V′)2γ(d)b.

The coherence transfer rate constants are given by31
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